

Hybrid Coupler 3 dB, 90°

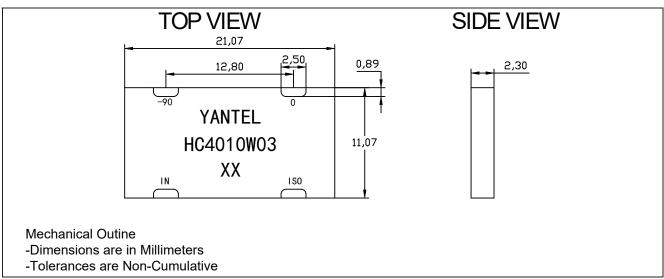
Rev A1.0

Description

The HC4010W03 is a low profile, high performance 3dB hybrid coupler in a new easy to use, manufacturing friendly surface mount package. It is designed for DCS & PCS band applications. The HC4010W03 is particularly for balanced power and low noise amplifiers, plus signal designed distribution and other applications where low insertion loss and tight amplitude and phase balance is required. It can be used in high power applications up to 350 Watts.

Features:

- 2000-6000 MHz
- High Power
- Very Low Loss
- Tight Amplitude Balance
- High Isolation
- Low VSWR
- Good Repeatability
- RoHS Compliant
- Tape & Reel Package available

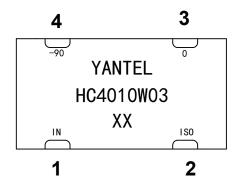

Electrical Specifications

Frequency	Isolation	Insertion Loss	VSWR		
MHz	dB Min	dB Max	Max : 1		
2000 - 6000	17	0.50	1.50		
Amplitude Balance	Phase Balance	Power	Operating Temp.		
dB Max	Degrees	Avg. CW Watts	°C		
± 1.75	90 ± 6.0	350	-55 to +85		

Notes:

- 1. All the above data are based on specified demo board.
- 2. Insertion loss:Thru board loss has been removed.

Mechanical Outline



Yantel Corporation

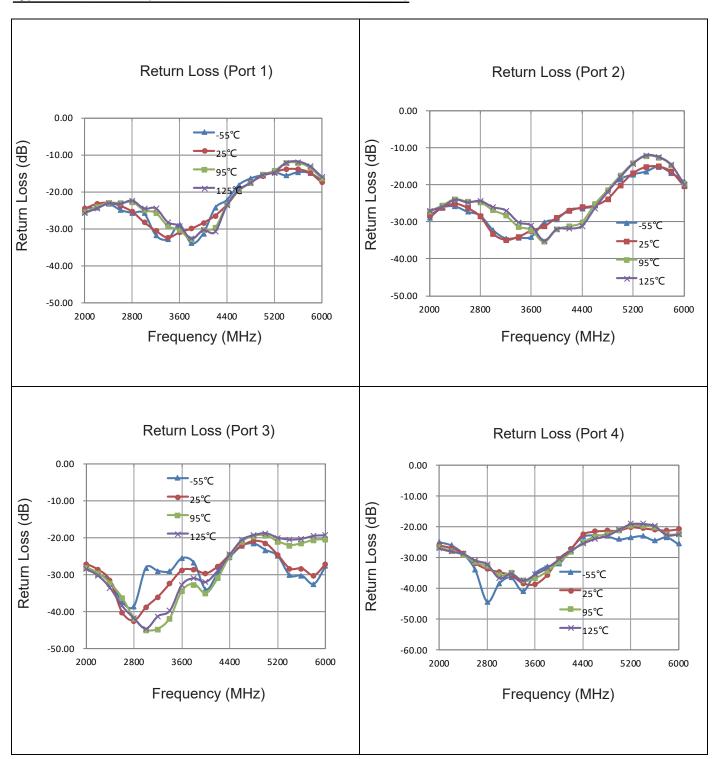
Hybrid Coupler 3 dB, 90°

Rev A1.0

Hybrid Coupler Pin Configuration

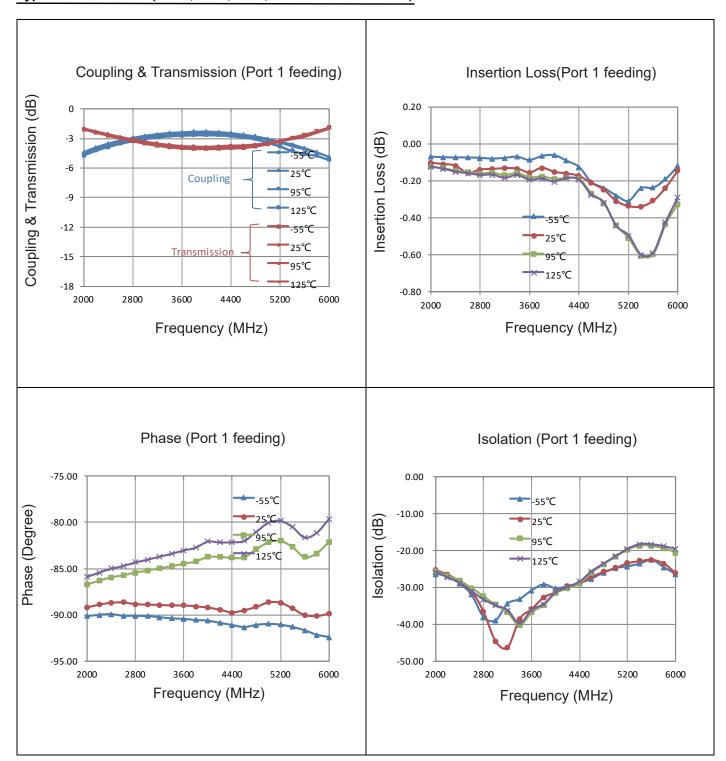
PORT CONFIGURATION					
INPUT	1	2	3	4	
1		ISOLATION	-3dB<0 DEG	-3dB<-90 DEG	
2	ISOLATION		-3dB<-90 DEG	-3dB<0 DEG	
3	-3dB<0 DEG	-3dB<-90 DEG		ISOLATION	
4	-3dB<-90 DEG	-3dB<0 DEG	ISOLATION		

Typical Performance Data (@25


Frequency (MHz)	Coupling (dB)	Transmission (dB)	Insertion Loss	Isolation (dB)	Amplitude Balance	Phase (degree)	C11	Return I	Loss(dB)	S44
2000	4.50	2.05	(dB)	0E 1E	(dB)	00.04	S11		S33	S44
2000	-4.52	-2.05	-0.10	-25.15	-1.41	-89.21	-24.49	-28.21	-27.04	-25.99
2200	-4.04	-2.36	-0.11	-26.40	-0.92	-88.90	-23.21	-26.20	-28.63	-26.89
2400	-3.66	-2.65	-0.12	-28.21	-0.53	-88.69	-22.90	-25.04	-31.51	-28.66
2600	-3.39	-2.95	-0.16	-30.85	-0.23	-88.64	-23.76	-26.21	-40.10	-31.81
2800	-3.11	-3.19	-0.14	-36.54	0.04	-88.83	-25.34	-28.52	-42.41	-33.70
3000	-2.89	-3.42	-0.13	-44.56	0.26	-88.88	-28.17	-33.19	-38.80	-34.67
3200	-2.72	-3.61	-0.13	-46.25	0.43	-88.92	-30.51	-34.85	-35.98	-35.70
3400	-2.59	-3.78	-0.13	-38.51	0.55	-88.98	-32.33	-34.01	-32.39	-38.31
3600	-2.55	-3.89	-0.15	-35.84	0.62	-88.98	-30.91	-32.35	-28.82	-38.60
3800	-2.46	-3.94	-0.13	-32.65	0.67	-89.07	-29.88	-31.23	-28.65	-35.70
4000	-2.48	-3.97	-0.15	-31.26	0.68	-89.21	-28.36	-28.83	-29.63	-30.30
4200	-2.52	-3.93	-0.16	-29.62	0.65	-89.44	-26.41	-27.00	-27.74	-27.23
4400	-2.58	-3.89	-0.17	-28.83	0.61	-89.74	-23.48	-26.05	-24.58	-22.50
4600	-2.69	-3.83	-0.21	-27.02	0.53	-89.51	-19.68	-25.55	-22.18	-21.51
4800	-2.86	-3.70	-0.25	-25.71	0.40	-89.15	-17.43	-23.79	-20.87	-21.25
5000	-3.14	-3.50	-0.31	-24.61	0.18	-88.65	-15.69	-20.08	-21.55	-21.19
5200	-3.43	-3.26	-0.33	-23.34	-0.08	-88.67	-14.63	-16.80	-24.66	-20.15
5400	-3.81	-2.93	-0.34	-22.78	-0.46	-89.31	-13.84	-15.12	-28.32	-20.43
5600	-4.11	-2.64	-0.31	-22.41	-0.80	-90.03	-13.84	-14.99	-28.32	-20.88
5800	-4.44	-2.31	-0.24	-23.43	-1.20	-90.14	-14.77	-16.36	-30.15	-21.17
6000	-4.89	-1.92	-0.14	-26.10	-1.73	-89.90	-17.41	-20.26	-27.13	-20.82

Hybrid Coupler 3 dB, 90°

Rev A1.0


Typical Performance (-55°C, 25°C, 95°C,125°C: 2000-6000MHz)

Hybrid Coupler 3 dB, 90°

Rev A1.0

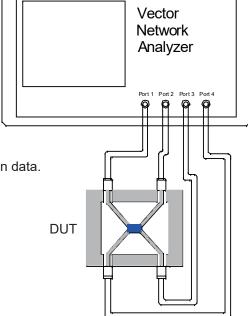
Typical Performance (-55°C, 25°C, 95°C,125°C: 2000-6000 MHz)

Hybrid Coupler 3 dB, 90°

Rev A1.0

Definition of Measured Specifications

Parameter	Definition	Mathematical Representation			
VSWR (Voltage Standing Wave Ratio)	The impedance match of the coupler to a 50Ω system. A VSWR of 1:1 is optimal.	$\text{VSWR} = \frac{V_{\text{max}}}{V_{\text{min}}}$ $\text{Vmax} = \text{voltage maxima of a standing wave}$ $\text{Vmin} = \text{voltage minima of a standing wave}$			
Return Loss	The impedance match of the coupler to a 50Ω system. Return Loss is an alternate means to express VSWR.	Return Loss (dB)= 20log $\frac{VSWR + 1}{VSWR - 1}$			
Insertion Loss	The input power divided by the sum of the power at the two output ports.	Insertion Loss(dB)= 10log $\frac{P_{in}}{P_{cpl} + P_{transmission}}$			
Isolation	The input power divided by the power at the isolated port.	Isolation(dB)= 10log $\frac{P_{\rm in}}{P_{\rm iso}}$			
Phase Balance	The difference in phase angle between the two output ports.	Phase at coupled port – Phase at transmisson port			
Amplitude Balance	The power at each output divided by the average power of the two outputs.	$10log \frac{P_{cpl}}{\left(\frac{P_{cpl} + P_{transmission}}{2}\right)} or 10log \frac{P_{transmission}}{\left(\frac{P_{cpl} + P_{transmission}}{2}\right)}$			

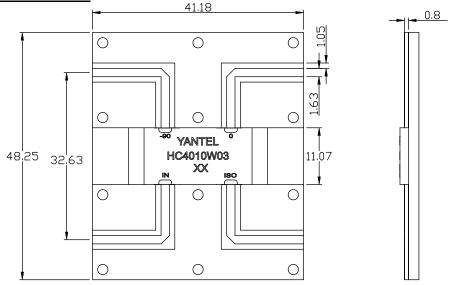

Test Method

- 1. Calibrating your vector network analyzer.
- 2. Connect the VNA 4 Port to DUT respectively.
- 3. Measure the data of coupling through port 1 to port 4(S41).
- 4. Measure the data of transmission through port 1 to port 3(S31).
- 5. Measure the data of isolation through port 1 to port 2(S21).
- 6. Measure the data of phase port 4 & port 3(port 1 feeding).
- 7. Measure the data of return loss port 1, port 2, port 3 & port 4.
- 8. According to the above data to calculate insertion loss, amplitude balance & phase.

Note:

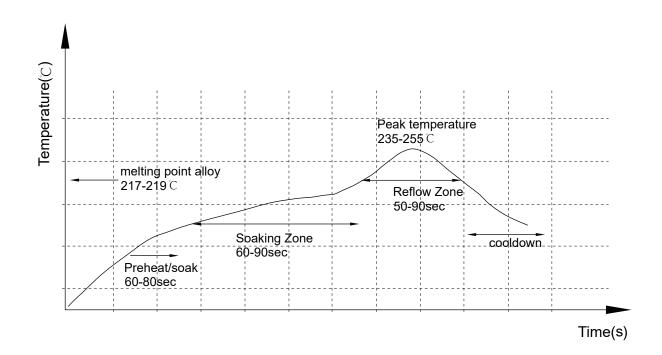
 When calculating insertion loss at room temperature, demo board loss should be removed from both coupling & transmission data.
 Please refer to the below table for demo board loss:

Frequency Range(MHz)	Demo Board Loss (dB) @25℃
470-860	0.07
800-1000	0.10
1200-1700	0.15
1700-2000	0.15
2000-2300	0.20
2300-2700	0.25



Hybrid Coupler 3 dB, 90°

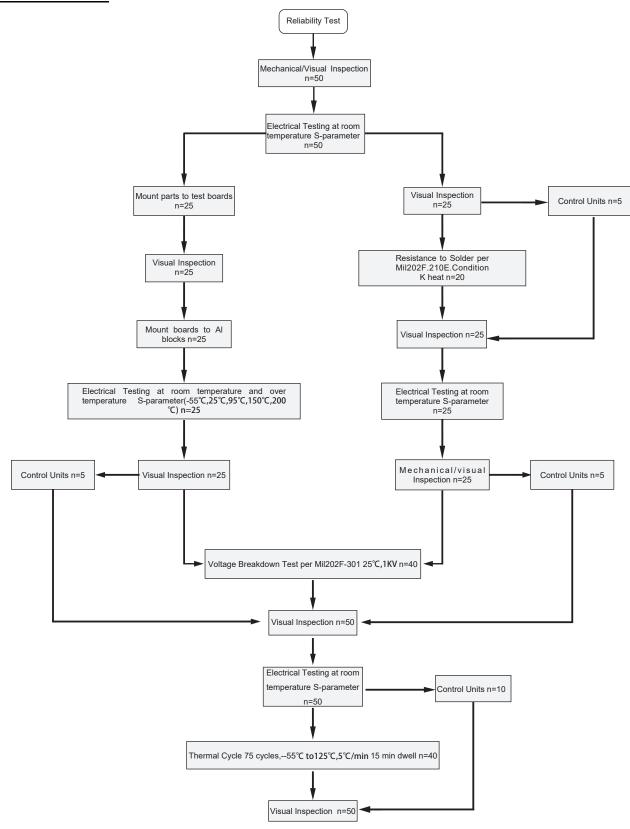
Rev A1.0



NOTE:

TRACE WIDTH IS SHOWN FOR ROGERS RO4003 WITH DIELECTRIC THICKNESS 32mil; COPPER: 1 OZ. EACH SIDE. FOR OTHER MATERIALS TRACE WIDTH MAY NEED TO BE MODIFIED.

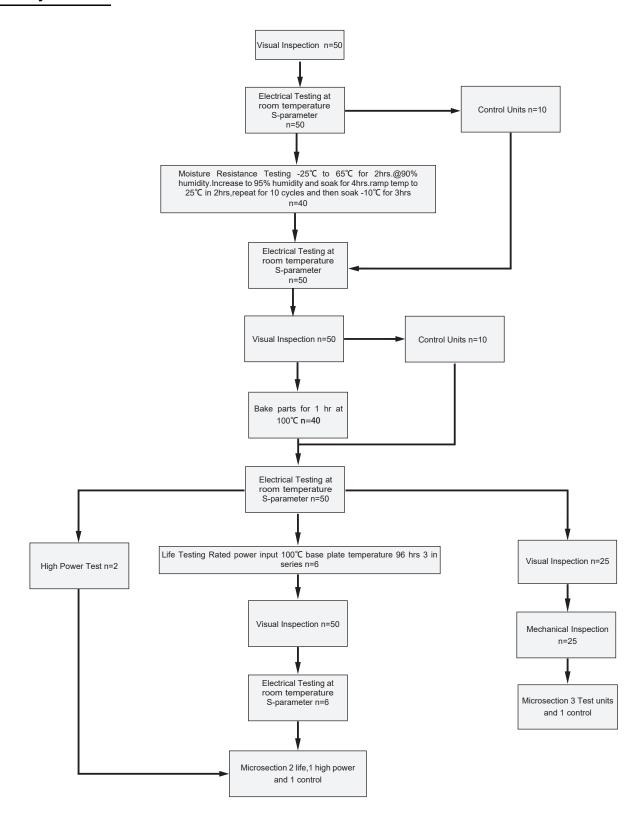
Reflow Profile



Hybrid Coupler 3 dB, 90°

Rev A1.0

Reliability Test Flow



Yantel Corporation

Hybrid Coupler 3 dB, 90°

Rev A1.0

Reliability Test Flow

